
1

Unified Modeling Language

郭大維教授
臺灣大學資訊工程系

sources: UML Distilled, Fowler ad Scott, 2nd Ed., Addison-Wesley, and UML 簡述, 陳盈志 * All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Contents
? Introduction
?Development Process
?Use Cases
?Class Diagrams & Object Diagrams
? Interaction Diagrams
?Packages and Collaborations
?State Diagrams, Activity Diagrams,

Physical Diagrams
?Misc

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Introduction

?Unified Modeling Language
?Object-Oriented Analysis and Design

(OOA&D)
?Specifying, Visualing, and

Documenting Computer Systems.
? Important Contributors:
?Grady Booch, Jim Rumbaugh, and Ivar

Jacobson
?Object Management Group (OMG)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Introduction

?Development of Object-Oriented
Methods
?Simmla 67 Language (Ole-Jone Dahl

in 1967), Smalltalk, C++, etc.
?OO Methods, 1980’s, 1990’s
?OOADA, Booch
?OOA/OOD, Coad and Yourdon
?OMT, Rumbaugh
?OOAD, Odell
?OOSE, Jacobson

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Introduction

Other methods Booch’91

Booch’93

OMT-1, Rumbaugh

OMT-2, Rumbaugh

Unified Method 0.8
Relational Software
bought Objectory !OOPSLA’95

OOSE, Jacobson

UML 0.91996

UML 1.0
OMG, 1997 OMG Standard

UML 2.0OMG, 2001

* UML 1.1 (1997), 1.2 (1998), 1.3 (1999), 1.4 (2000)

By Revision Task Force (RTF)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Introduction

?UML - A Modeling Language
?Notations

?Modeling Methods
?A modeling language
?A process
?What steps to take in doing a design!

?Rational Unified Process (RUP)
?By Booch, Rumbaugh, and Jacobson

2

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Introduction

?Notations
?Graphical stuff
?Syntax of the language, e.g., class

?Meta-Models
?Diagrams, e.g., class diagrams

Customer

Name
Address

Credit ()

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Company

Name
Credit Status
Credit Limit

Notification()

Introduction
?A Class-Diagram Example

Invoice

Day: Date
Payment：
Boolean
No：String
Price：Money
Deliver()

Customer

Name: String
Address:
String

Credit-Status()

Person

Credit Card

＊ 1

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Introduction

?OO Method vs Formal
Specification/Design Language
?Less rigorous, easy understanding

and manipulation

?Standard vs Nonstandard Methods
?Flexibility, Automatic Analysis, and

Info/Code Exchanging

jjj Piii ????)],@()1,[@(, ??

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Introduction

?Why do analysis and design?
?Communication
?Code is precise but too detailed.
?E.g., package diagrams to show the

major system components.
?Learning OO
?Help people to do good OO.

?Communicating with Domain Experts
?Understanding of users’world
?Use Cases and Class Diagrams!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Introduction

?Why “Unified”?
?Across historical methods and

notations
?Across the development lifecycle
?Across application domains
?Across implementation languages

and platforms
?Across development process
?Across internal concepts

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Introduction

?Objectives of UML
?Specifying, Visualing, and

Documenting Computer Systems.
?Elements -> Vocabularies
?Design Guidelines and Experience

Rules -> Grammar

3

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Introduction
?Five UML View -Points

Design
View

Implementation
View

Process
View

Deployment
View

Use-Case View

* The figure comes from “物件導向分析與設計”，林正甫，松岡，2000.

functionality
system assembly
configuration management

behavior
Logical
View Points

Physical
View Points

system architecture &
topology

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Introduction

?Use-Case View
?Specify system functionality for users,

designers, and test engineers.
?Diagrams: use cases, sequence,

collaboration, state, activity diagrams.

?Design View
?Specify detailed design of the system ’s

internal functionality, including use-cases
and actors.
?Diagrams: Class, Object, State, Sequence,

collaboration, activity diagrams

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Introduction
? Implementation View
?Specify how to split the system into

software components and do
implementation.
?Diagrams: state, sequence, collaboration,

activity diagrams.

?Process View
?Specify the operation of the entire

system
?Diagrams: component, state, sequence,

collaboration, activity diagrams.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Introduction

?Deployment View
?Specify the architecture of the

system hardware and the
deployment of software processes.
?Diagrams: deployment, state, sequence,

collaboration, activity diagrams.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Introduction

?UML Vocabularies

?Things
?Structural things, e.g., classes,

components, use cases.
?Behavioral things, e.g.,Interaction

and state machine.
?Grouping of things, e.g., package.
?Annotational things, e.g., notes.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Introduction

?Relationships
?Dependency
?Association
?Generalization
?Realization

?Diagrams
?Use case, class, object,

sequence, collaboration, state,
activity, component, deployment.

4

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Contents
? Introduction
?Development Process
?Use Cases
?Class Diagrams & Object Diagrams
? Interaction Diagrams
?Packages and Collaborations
?State Diagrams, Activity Diagrams,

Physical Diagrams
?Misc

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Development Process

?UML - A Modeling Language
?Notations

?Modeling Methods
?A modeling language
?A process
?What steps to take in doing a design!

?Rational Unified Process (RUP)
?By Booch, Rumbaugh, and Jacobson

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Overview

?An iterative and incremental
development process:
?Each construction iteration
?Analysis, design, implementation,

testing, and integration.

Inception Elaboration Construction
…

Transition

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Overview

?Keep a ceremony to a minimum!
?A lot of formal paper

deliverables, formal meetings,
formal sign-offs for high-
ceremony projects.

?Possible iterations in all phases!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Inception

?Goal:
?Establish the business rationale for

the project.
?Decide the scope of the project.

?Forms:
?Informal chatting
?Full-pledged feasibility study

?What should be done?
?Work out the business case – cost

and income!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Elaboration
?Want to get a better understanding of

the problem:
?What is it you are actually going to build?
?How are you going to build it?

?Contents:
?Collect more detailed requirements.
?Do high-level analysis and design to

establish a baseline architecture.
?Create the plan for construction.

5

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Elaboration

?Risks:
?Requirement Risks
?Technical Risks
?Skill Risks
?Political Risks

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Elaboration – Requirement Risks

?Requirement Risks
?Q:
?Will we build a wrong system?

?Starting points:
?Use cases
?A typical interaction that a user has

with the system in order to achieve a
goal!

Set Limits

Trading Manager

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Elaboration – Requirement Risks

?The usage of use cases
?Indicate a function that users can

understand and that has a value for
users.
?No too much detailed!

?Domain Model
?A model whose primary subject is

the world the computer system is
supporting!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Elaboration – Requirement Risks

? Important tasks for elaboration
?Get all potential use cases,especially

the most important and riskiest ones.
?Come out the skeleton of the

conceptual model of the domain:
?How the business operates?
?Lays a foundation for the object

model that will represent objects
supported by the system.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Elaboration – Requirement Risks

?UML Techniques for Conceptual
Domain Model:
?Class Diagram
?Definitions of vigorous vocabulary

about the domain.
?Activity Diagram
?Encouraging the finding of parallel

processes.
?Interaction Diagram
?Exploring different roles interact in the

business

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Company

Name
Credit Status
Credit Limit

Notification()

Elaboration – Requirement Risks

?A Class-Diagram Example

Invoice

Day: Date
Payment：
Boolean
No：String
Price：Money
Deliver()

Customer

Name: String
Address:
String

Credit-Status()

Person

Credit Card

＊ 1

6

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Elaboration – Requirement Risks

?An Activity Diagram
Example

Receive Order

ProductsDelivery

Start

Receive Payment

End

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Elaboration – Requirement Risks
?An Interaction Diagram Example –

Sequence Diagram
Order Input
InterfaceInvoice

Items
Item In-
Stock

object

prepare()

message

*prepare()

HasStock:=
Check()

[HasStock]
remove()

Return

object

needsReorder:=
needsToReorder(
)

Self-Call

Re-order

[hasStock] new
Deliver

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Elaboration – Requirement Risks

?Remark
?Use minimum notation
?Focus on important issues and risky

areas
?A starting point for building classes in

the construction phase
?Use package diagrams if needed

?A skeleton – concentrate on
important details, instead of all.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Elaboration – Requirement Risks

Orders Customers

Customer
Service

?A Package Diagram Example

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Elaboration – Requirement Risks

?Remark
?A small team in building the domain

model
?Build a prototype of any tricky parts

of the use cases.
?Get access to domain experts!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Elaboration – Technological Risks

?Technological Risks
?Q:
?Will the selecting technology

actually do the job for us?
?Will the various pieces fit

together?
?Possible solution:
?Build prototypes to try out

technology!

7

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Elaboration – Technological Risks

?Biggest Challenge:
?How the components of a design fit

together?
?E.g., Java + database + session + …

?Must:
?Address any architecture design

decisions!
?Especially for distributed systems!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Elaboration – Technological Risks

?Questions: How can we change the
elements of the design relatively easy?
?What will happen if a piece of technology

doesn’t work?
?What if we can’t connect two pieces of the

puzzle?
?What is the likelihood of something going

wrong?
?Look at use cases to do assessment!
?Class diagrams,interaction diagrams,

package diagrams,deployment diagrams.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Elaboration – Technological Risks
?A Deployment Diagram Example:

Server

：Object
Database

：Health Care
Domain

Liver Unit
Server

Application

Configure Medical
Cal Knowledge

:Configure Users

Unit Configuration

a Windows PC

:Liver Unit
Client
Facade

:Liver Unit UI

Interface
node

object

Configuration

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Elaboration – Skills Risks

?Skill Risks
?Can you get the staff and expertise you need?
?Always little experience and thought

?Solutions
?Short training
?Mentoring
?Project reviewing every specific period of time
?Reading
?Pattern learning

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Elaboration – Political Risks

?Political Risks
?Are the political forces that get in the

way and seriously affect your project?
?Internal
?External

?Solutions
?Find good ones to do it if you cannot!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Elaboration

?Duration
?A fifth of the total length of the project.

?Events to signal the termination
?Developers feel comfortable providing

estimates to the person-week effort.
?All significant risks have been

identified, and how you intend to deal
with them are known.

8

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Planning of the Construction
Phase

?Goal
?Be aware of progress
?Signal progress through the team

?Essence
?Set up a series of iteration
?Define the functionality to deliver in

each iteration

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Planning of the Construction
Phase

?Method
?Customer vs Developer
?Customer
?Assess the business value of a use

case.
?Developer
?Build the system

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Planning of the Construction
Phase - Steps
?Steps
?Categorize use cases according to the

business value and development risks!
?Determine your iteration length
?A fixed iteration with a handful of case

uses being implemented.
?project velocity
?Developer-week per iteration =

(#developers*iteration-length)/load-factor

?Iteration#
?(Development-time of all use cases /

Developer-week per iteration) + 1

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Planning of the Construction
Phase - Steps

?Assign use cases to iterations
?Do not put off risk until the end!

?Contingency Factor
?10~20 percent of the construction

time.
?Transition
?10~35 percent of the construction

time for tuning and packaging
?Ready for a release plan!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Construction

?Goal
?Build the system in a series of iterations.
?Demo and confirm the implementation.
?Reduce risk!

? Iterations within construction are both
incremental in function and iterative in
the code base!
?Refactoring!
? Integration!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Remark

?Self-Testing Software
?Testing as a continuous process!
?Unit test code by the developers
?Function test code developed by a

separate team

?When the plan goes away!
?Time-boxed!
?Redo the plan!

9

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Remark

?Refactoring – a couple of small steps
?Rewriting vs redesigning
?Never refactor a program and add

functionality to it at a time.
?Have a good test in-place before

refactoring
?Take short, deliberate steps
?Avoid debugging!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Using UML in the Construction

?Add a use case
?Check class diagrams to see how

they fit the software been built!
?How classes collaborate to

implement the functionality required
by each use case
?Try interaction diagrams!
?If the change is serious, use the

notations to discuss with colleagues!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Using UML in the Construction

?Use UML to help document what is
built!
?Detailed documentation should be

from the code! (+ additional doc)
?Use package diagrams as the

logical road map of the system!
?Dependencies of logical pieces

?Use deployment diagrams to show
the high- level physical picture!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Using UML in the Construction

?For a class with a complex behavior
?Use state diagrams to describe it!
?Use iteration diagram to describe

complicated interactions among classes

?When a complex algorithm is involved
?Use activity diagram to understand the

code!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Using UML in the Construction

?An State Diagram Example

Examine
do / check

item

Send
do / initiate
delivery

Wait Deliver

Begin

/ get first itemNot all items checked
/ get next item [All items checked &&

all items available]

[All items checked &&
some items not in stock]

Item Received
[some items not
in stock]

Item Received
[all items
available] Delivered

Activity

Self -
Transition

Transition

State

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Transition

?Goal:
?Development to fix bugs!
?No additional of substantial functionality!
?Beta-testing, performance tuning, user training,

etc.
?Why iterative development?
?Do the development process regularly!
?Get used to deliver finished code!

?Tradeoff
?Meet users’requirements
?Optimize code!

10

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

When To Use iterative
Development

?Only on projects you want to
succeed!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Contents
? Introduction
?Development Process
?Use Cases
?Class Diagrams & Object Diagrams
? Interaction Diagrams
?Packages and Collaborations
?State Diagrams, Activity Diagrams,

Physical Diagrams
?Misc

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Use Cases

?Why use cases?
?People need a way to communicate

in project development and planning.
?Scenarios – those behind use cases
?A sequence of steps describing an

interaction between a user and a
system.
The customer browses the catalog and adds desired
items to the shopping basket. When the customer
wishes to pay, the customer describes the credit and
shopping info and confirms the sale. The system
check the authorization on the credit card and confirms
the sale both immediately and with a follow -up email.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Use Cases

? A use case is a set of scenarios tied
together by a common user goal!

? Buy a Product – Use -Case Text:
1. Customer browses the catalog and selects items to buy.
2. Customer goes to check out.
3. Customer fills up in the shipping information.
4. System presents full pricing information, including

shopping.
5. Customer fills in credit card information.
6. System authorizes purchase.
7. System confirms sale immediately.
8. System sends confirming email to customer.

? Alternative: Authorization Failure
? At Step 6, if the authorization fails,let customer try again!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Use Cases

?How to create a use case?
?Describe the primary scenario and

alternatives as variations on that
sequence!
?The existence of preconditions!

?Divide up use cases
?E.g., Regular Customer – skip steps 3,

4, and 5 when info is already there.
?Need an amount of detail depending

on the risk in each use case!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Use Case Diagrams
? Introduced by Jacobson in 1994
?Show what needed to build in each

iteration!
?Example – Trading (Chp3)

?Primary Elements:
?Actor
?A role that a user or an external system

plays with respect to the system!
?A user can play more than one role.
?Actors, who carry out use cases, are useful

when trying to come up with the use cases.

11

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Use Case Diagrams

?Situations worth tracking the actors
later:
?Need configuring for various of users.
?Help in negotiating priorities among

various actors.
?Remark:
?Use cases may not have clear links to

specific actors.
?A good source for identifying use

cases is external events!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Use Case Diagrams

?From the external point of view
?It describes what use cases are.
?Scope and Constraints

?What users really want!

?From the internal point of view
?It describes how use cases operate.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Use Case Relationships

? Include
?Occur when you want to avoid

repetition.
?E.g., Analyze-Risk and Price-Deal

“include”Valuation.
?Generalization
?Describe a variation on normal

behavior (casually).
?Override the base use case!
?E.g., Limits-Exceeded is “generalized”

into “Capture-Deal”.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Use Cases Diagrams

?Extend
?Similar to generalization but with

more rules to it.
?Extension points for adding behavior

to the base use case.
?Example – Buy-a-Product and

Regular Customer
?Generalization and Extend may

cause the splitting of complicated
use cases.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Use Cases
?System Use Cases
?An interaction with the software.
?E.g., text copying and style def. functionality

?Business Use Cases
?How a business responds to a

customer or an event.
?E.g., unifying text formats.

?Order in Elaboration
?Business use cases first
?System use cases to satisfy business use

cases
?Use cases represent an external view.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Use Case Diagrams

?Use Case Boundary
?To identify what is external or internal
?Typical system boundaries
?HW/SW boundary of a device or

computer system
?Dept of an organization
?Entire organization

?Examples
?Wire in paychecks

12

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Contents
? Introduction
?Development Process
?Use Cases
?Class Diagrams & Object Diagrams
? Interaction Diagrams
?Packages and Collaborations
?State Diagrams, Activity Diagrams,

Physical Diagrams
?Misc

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Class Diagrams

?Why Class Diagrams?
?Central within object-oriented methods

in modeling systems and the
relationship among their components.

?Usages of Class Diagrams
?Types, attributes, operations of objects
?Static relationship among them
?Association
?Subtypes, etc.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Class Diagrams
?Three Perspectives in Drawing Class

Diagrams (Cook and Daniels, 1994):
?Conceptual – << type >>

?Represent the concepts in the domain
under study – maybe no direct mapping to
classes
?Should be language-independent

?Specification – << type >>
?Consider software and the interfaces of

the software
?No implementation should be considered.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Class Diagrams

? Implementation – << implementation class >>

?Lay down the implementation bare

?Lines between perspectives are not
sharp; however, it is important to
separate the specification perspective
and implementation perspective!!
?Perspectives are no part of the formal

UML but are useful in modeling.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Class Diagrams

?Association
?Relationship between instances of

classes.
?Association Ends – Roles!
?Multiplicity – *, 1..n, etc.
?Navigability
?Order -> Customer

?Naming
?Associations – verbs
?Roles – nouns

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Class Diagrams

?Perspectives
?Conceptual relationships between

classes.
?Within specification perspective
?Associations represent responsibilities –

Queries and Updates
Class Order {

Public Customer getcustomer ();
…

?The diagram indicates only the interface –
nothing more!

13

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Class Diagrams

?In implementation model
?Pointers in both directions between

the related classes.
class Order {

private Customer _customer;
private Set _OrderLines;
…

?Navigability!
?Unidirectional/Bidirectional

Associations
?Inverse Constraints

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Attributes
?Attributes denote the status and

characteristics of classes
?Single valued
?visibility name:type = default-value
?Optional, e.g., dateReceived[0..1]:Date

?Perspectives
?At the conceptual level
?Simply notations

?At the specification level
?A way to set values

?At the implementation
?A field for a attribute

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Operations

?Definition:
?Operations are processes that a class

knows to carry out.
?Operations correspond to the methods

on a class.
?Perspectives
?At the conceptual level,
?The principal responsibilities of classes

?At the specification level,
?Methods on a class

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Operations

?At the implementation level,
?Private (-), public (+), and protected (#)

operations, as well:
visibility name (parameter-list): return -

type-expression [property-string]
?+ balanceOn (date:Date): Money
?Parameter
?Direction name:type = default-value

(direction: in, out, inout)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Operations
?Types – constraints
?Queries
?Marked as { query }

?Modifiers
?Getting/Setting Methods (internal

knowledge)
?Operations vs Methods
?The body of a procedure – method

(body)
?Method call/declaration – operation
?e.g., polymorphism – subtyping

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Generalization

?Definition
?“Super-type”– inverse of

specialization
?Perspectives
?At the conceptual level,
?Everything about a “super-type”is true

for a “subtype”.
?At the specification level,
?The interface of a “subtype”must

conform to that of a “super-type”.

14

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Generalization

?Substitutability of code
?polymorphism

?At the implementation level,
?Inheritance in programming

languages
?Subclassing is one way to implement

subtyping but not the only way.

?Stability of Generalization

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Constraints Rules

?Constraints { } on attributes,
associations, generalization, etc.
?Format:
?Informal English statements
?Object Constraint Language (OCL)

flight.pilot.training_hour >=
flight.plane.minimum_hours

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Class Diagrams
?When to use them?
?Do not try to use all the notations

available to you.
?Fit the perspective from which you are

drawing the models to the stage of the
project:
?Concept model – analysis
?Specification model – software
?Implementation model – illustrate

implementation techniques
?Concentrate on key areas

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Design by Contract
(Bertrand Meyer)

?Assertions
?A Boolean statement that should never be

false.
?Types:
?Pre-conditions – checked by callers
?What we expect!

?Post-conditions – checked by operations
?What we do! (e.g., square-root)

?Invariants – constraint rules on class
diagrams
?May be false during the execution on a

method (e.g., balance ==sum(entries.amount()).

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Design by Contract
(Bertrand Meyer)

?Assertions
?Subclassing
?Strengthen the invariants or post-

conditions!
?Weakening the pre -conditions!
?Substitution

?Ideally as a part of the code!
?Invariants are equivalent to

constraint rules on class diagrams!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Contents
? Introduction
?Development Process
?Use Cases
?Class Diagrams & Object Diagrams
? Interaction Diagrams
?Packages and Collaborations
?State Diagrams, Activity Diagrams,

Physical Diagrams
?Misc

15

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Interaction Diagrams

?Purpose:
?Models that describe how groups of

objects collaborate in some behavior.
?Capturing of the behavior of a single

use case typically.
?Types:
?Sequence Diagrams
?Collaboration Diagrams

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Sequence Diagrams

?A Object – A Box
?Lifeline – Object’s Life
?Message
?An arrow between the lifelines of two

objects
?Message Order (top to bottom)
?Labeled with a name, arguments,

control information, etc.
?A Self-Call

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Sequence Diagrams
?Control Information
?A condition, e.g., [needsReorder]
?An iteration marker, e.g., *[for all order

lines]
?Return
?A return from a message – a dashed line

?Asynchronous Message – do not block
the caller
?Create a new thread or a new object
?Communicate with a thread that is running.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Sequence Diagrams

?Object Deletion

?Why Sequence Diagrams?
?Emphasize on sequence
?Capture the overall flow of control!
?Show concurrent processes!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Collaboration Diagrams

?An Interaction Diagram which
provide the spatial layout of objects!
?Notation
?objectName:ClassName

?Numbering of Messages
?Simple Numbering
?Decimal Numbering
?Which operation is calling which

operation!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Collaboration Diagrams
?Collaboration Diagrams with Simple Numbering

:Order_Entry_Window

:Order

Macallan line:Order Line

:Delivery Item

Macallan stock:Stock Item

:Reorder Item

1. prepare()

2*[for all order lines]. prepare()

3. hasStock :=check()

4. [hasStock]:remove()

5. needsReorder:=needToReorder()

6. [needsReorder]:new7. [hasStock]:new

16

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Collaboration Diagrams
?Collaboration Diagrams with Decimal Numbering

:Order_Entry_Window

:Order

Macallan line:Order Line

:Delivery Item

Macallan stock:Stock Item

:Reorder Item

1. prepare()

1.1*[for all order lines]. prepare()

1.1.1. hasStock :=check()

1.1.2. [hasStock]:remove()

1.1.2.1. needsReorder:=needToReorder()

1.1.2.2. [needsReorder]:new1.1.3. [hasStock]:new

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Interaction Diagrams

?Why Collaboration Diagrams?
?Use the layout to indicate how

objects are statically connected.

?When to use Interaction Diagrams?
?Behavior of several objects within a

single use case typically – simplicity!
?Collaborations among the objects

?When alternatives are considered?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Contents
? Introduction
?Development Process
?Use Cases
?Class Diagrams & Object Diagrams
? Interaction Diagrams
?Packages and Collaborations
?State Diagrams, Activity Diagrams,

Physical Diagrams
?Misc

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Class Diagrams: Advanced
Concepts

?Class Diagrams
?Central within object-oriented

methods in modeling systems and
the relationship among their
components.

?Many more notations:
?Stereotypes
?Core extension mechanism of UML
?Subtypes of Class, Association,

and Generalization

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Class Diagrams

? Interface
?An example of Stereotypes!
?A class that has only public

operations with no method bodies or
attributes
?<<interface>>

?Profile
?Extend a part of UML with

stereotypes for a particular purpose.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Object Diagrams

?A snapshot of the objects in a
system at a point in time.
?An instance diagram
?instance name: class name
?Both are optional – :Person

?A collaboration diagram without
messages

17

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Class Diagrams

?Class Scope Operations and Attributes
?Class Scope vs Instance Scope

?Classification
?Relationship between an object and its

type
?Single vs Multiple Classification
?Single Classification:
?An object belongs to a single type,

which may inherit from supertypes.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Class Diagrams

?Multiple Classification
?An object may have any of these

types assigned to it in any
allowable combination.
?Discriminator
?An indication of the basis of the

subtyping – disjoint!
?Constraint {complete}
?An instance of the superclass

must be an instance of one of
the subtypes of a group.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Class Diagrams
?Multiple Classification

Person

Female

Male
sex
{complete}

Patient

patient

Doctor

Nurse

Physiotherapist

Surgeon

Family
Doctorrole

(Patient, Doctor)
(Male, Nurse)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Class Diagrams

?Static vs Dynamic Classification
?Dynamic Classification
?Change objects’type within the

subtyping structure.

?Multiple, Dynamic Interface
?Additional behavior

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Class Diagrams
?Multiple, Dynamic Classification

Person

Female

Male
sex
{complete}

Manager

Engineer

Salesman

job
<<dynamic>>

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Aggregation and Composition

?Aggression
?A part-of relationship
?E.g.

?car and engine

?A style instance may be shared by a polygon and a
circle.

?Composition
?A stronger variety of aggression
?The parts are usually expected to live or

die with the whole.
?E.g., a point must belong to a polygon!

18

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Aggregation and Composition

?Alternative Notation:

Circle

Point
1

Polygon

Point
{ordered} 3..*

Style

1

*

1

*

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Derived Associations and
Attributes

?Derived Features
?Derived from others on a class

diagram
?Conceptual Perspective
?Confirm with the domain experts

?Specification Perspective
?Constraints between values – age

?Implementation Perspective
?Caching for performance reasons

Time Period

start:Date
end:Date
/duration:Quantity

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Interfaces and Abstract
Classes
? Interface
?Abstract Class: A class with no

implementation (fields and method
bodies) but operation declarations
?Italicize the abstract item name and

label it with the { abstract } constraints
?Realization
?One class implements behavior

specified by another – confirm to the
interface without using inheritance!
?Subtyping in a specification model!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Interfaces and Abstract
Classes

?Dependency
?If one changes, then anyone which

depends on the former must change
accordingly.

InputStream

DataInputStream

<<interface>>

DataInput OrderReader

* An abstract class allow the implementation of some of the method

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Reference Objects and Value
Objects

?Reference Objects
?An object with an identity and can be

referenced – no copies (change
synchronization)!
?E.g., Customer

?Value Objects
?Values without identities, e.g., date.
?Immutable built-in values of the type

system (cause of confusion in UML)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Multivalued Association Ends

?A Multivalued End
?Whose multiplicity’s upper bound is

greater than 1, e.g., *.
?Constraint
?Sets – basic type
?{ ordered }
?{ bag } – multi -set
?{ hierarchy }
?{ dag }

19

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Frozen Constraint

?Frozen Constraint
?Attribute – no change on values,

value set at the object creation time.
?{ frozen } vs { read only }

?Association End – the association
end on a class could not be changed.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Associations
?Classification
?The object Shep is an instance of the

type Border Collie
?Generalization – being transitive
?The type Border Collie is a subtype

of the type Dog
?Quantified Associations
?Specification Perspective – imply an

interface!
?Implementation Perspective – The

use of a data structure to hold data

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Associations

?A Qualified Association

Order Product
Order Line

Amount:Number
0..1

line item

class Order {
public OrderLine getLineitem (Product aProduct);
… .

class Order {
private Map _lineItems;

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Associations
?Association Classes
?Add attributes, operations, and other

features to associations – one instance
from each side!

?Another notation: promoting…

Person company* employer

0..1

Employment

Period:dateRange

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Associations

?An Illegal Association Class (Although
it seems fine)

?Another Solution: Promote the
association class into a “full” class!

Person company* employer

*

Employment

Period:dateRange

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Associations
?Use Stereotypes
?<<history>>

? class Person {
Company getEmployer();
Company getEmployer(Date)
void changeEmployer(Company newEmployer,

Date changeDate
void leaveEmployer (Date changeDate);

Person company*
employer

<<history>>

0..1

20

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Parameterized Class

?Parameterized Class
?Template in C++

int main {
number<int> ni;
nc.get_number();
…

template <class numtype>

class number
{

private:
numtype n;

public:

number () { n = 0; }
void get_number() { cin >> n; }

}

Number
numtype

get_number()

n

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Parameterized Classes

?A Bound Element
?Set<Employee>

or

Set<Employee>

Set
T

insert(T)
remove(T)

EmployeeSet
<<bind>>

<Employee>

A stereotype

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Visibility
?Different languages have different

rules in “+private”, “-public”, and
“#protected”!!
?C++
?Public Member: visible to anywhere!
?Private Member: used only by the class that

defines it!
?Protected Member: (a) used only by the class

that defines it or (b) a subclass of that class!

Customer Personal Customer

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Contents
? Introduction
?Development Process
?Use Cases
?Class Diagrams & Object Diagrams
? Interaction Diagrams
?Packages and Collaborations
?State Diagrams, Activity Diagrams,

Physical Diagrams
?Misc

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Package Diagrams

?How do you break down a large
system into smaller systems?
?Functional Decomposition
?Separation of functions and

data

?UML Package Diagrams
?A OO Grouping Mechanism

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Package Diagrams
?Definition: Package Diagrams
?Class Diagrams that only show

packages and dependencies

?Packages
?Group of Classes or Packages

?Dependencies
?A dependency exists between two

elements if changes to the definition of
one element may cause changes to the
other element.

21

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Package Diagrams

?Why Changes Propagate?
?One class sends messages to

another.
?One class has another as part of its

data.
?One mentions another as a

parameter to an operation.

Interface changes!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Package Diagrams

How to minimize dependencies?

?UML Dependency vs Compilation
Dependency?

?Why no transitivity?
?Similar to a layered architecture!

?Example: Package Diagram

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Package Diagrams

?Class Types inside a Package:
?Private, Public, or Protected
?Sharing/Dependency of the Public

Methods of Public Classes!
?Reducing of the Interface of a

Package
?Facades

?Another Objective for Package
Diagrams:
?Help to see what dependencies are!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Package Diagrams

?Containment of Packages or Classes
?Key Classes

?Dependency of Packages That Contain
Sub-packages
?Summaries of Low-Level Dependency

? <<global>> Package
?Global Dependency

? <<abstract>> Package
?Generalization – Dependency Implication

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Package Diagrams

?Rules of Thumb
?Minimize dependencies
?Refactoring!

?Remove cycles in the dependency
structure as much as possible!
?Contain them in a large containing

package!
?Eliminate them from the interactions

between the domain and external
interfaces!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Package Diagrams

?Collaboration
?The interaction among two or more

classes
?Show the implementation of an

operation or the realization of a use
case.

?May include class diagrams and
interaction diagrams
?Use for classes inside a package or

common behavior across packages

22

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Package Diagrams

?Parameterizing of Collaboration
?Same collaboration for different

classes
?Roles (Collaboration) vs Classes
?Pattern

?Example: Collaboration for Sale

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Package Diagrams

?Parameterized Collaboration for Sale

Buyer

Seller

Offer

Lot

buyer, seller, lot, offerSale

1

1
1

*

*

*

seller

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Package Diagrams

?Using the Sale Collaboration

Party House

Offer

1 *
seller1 1

*

*

buyer

offer

lot

Sale
Buyer, seller

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Package Diagrams

?When to Use Package Diagrams
?Whenever a class diagram that

encompasses the whole system is
no longer legible on a A4 sheet of
paper!
?Useful for testing as well!

?When to use Collaboration?
?Refer to a particular interaction
?Parameterized collaboration

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Contents
? Introduction
?Development Process
?Use Cases
?Class Diagrams & Object Diagrams
? Interaction Diagrams
?Packages and Collaborations
?State Diagrams, Activity Diagrams,

Physical Diagrams
?Misc

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

State Diagrams

?Why State Diagrams?
?Describe the behavior of a

system.
?Describe all of the possible

states that a particular object can
get into and how the object’s
state changes as a result of
events that reach the object.
?Based on statechart by David Harel

(1987)

23

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

State Diagrams
?Syntax
?Event [Guard] / Action
?do / activity
?Start point

?Action
?Be associated with a transition
?Occur quickly and is not interruptible.

?Activity
?Be associated with a state
?May be interrupted by some event.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

State Diagrams

?Guard
?A logical condition
?Guards from the same state should

be mutually exclusive
?A transition should occur as soon as

the corresponding event happens.

?A state could have no activity!
?Superstate

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

State Diagrams

?An State Diagram Example

Examine
do / check

item

Send
do / initiate
delivery

Wait Deliver

Begin

/ get first itemNot all items checked
/ get next item [All items checked &&

all items available]

[All items checked &&
some items not in stock]

Item Received
[some items not
in stock]

Item Received
[all items
available] Delivered

Activity

Self -
Transition

Transition

State

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

State Diagrams

?An State Diagram Example

Examine
do / check

item

Send
do / initiate
delivery

Wait Deliver

Begin

/ get first itemNot all items checked
/ get next item [All items checked &&

all items available]

[All items checked &&
some items not in stock]

Item Received
[some items not
in stock]

Item Received
[all items
available] Delivered

Activity

cancelled

cancelled

cancelled

cancelled

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

State Diagrams
?An State Diagram Example - Superstate

Examine
do / check

item

Send
do / initiate
delivery

Wait

Deliver

Begin

/ get first item
Not all items checked
/ get next item [All items checked &&

all items available]

[All items checked &&
some items not in stock]

Item Received
[some items not
in stock]

Item Received
[all items
available] Delivered

Activity

cancelled

cancelled

Active

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

State Diagrams

?Other Event Types
?No-state transition event
?eventName / actionName

?After Event
?after (20 minutes)

?When Event
?when (temperature > 100 degrees)

?Entry/Exit Event

24

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

State Diagrams

?Example: Payment authorization

authorizing
do/check
payment

Authorized

Delivered

Rejected

[payment not ok]

[payment ok]

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

State Diagrams
?Concurrent State Diagrams
?More than one state at any point
?Good when a given object has sets

of independent behaviors

Authorizing Authorized

Checking

Waiting

Dispatching

Cancelled

Delivered

Rejected

cancelled

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

State Diagrams

?When to Use State Diagrams?
?Describe the behavior of an object

across several use cases.
?Use interaction diagrams or activity

diagrams if needed
?Only classed exhibiting interesting

behavior!
?Do not draw state diagrams for every

class!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Contents
? Introduction
?Development Process
?Use Cases
?Class Diagrams & Object Diagrams
? Interaction Diagrams
?Packages and Collaborations
?State Diagrams, Activity Diagrams,

Physical Diagrams
?Misc

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Activity Diagrams
?Why Activity Diagrams?
?Useful in connection with workflow and

in describing behavior that has a lot of
parallel processing.
?Describing the sequencing of activities

with support for both conditional and
parallel behavior.
?Origin:
?Event diagrams (Jim Odell), state

modeling techniques, workflow
modeling, Petri nets.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Activity Diagrams

?Core Symbols
?Activity State or Activity

?Conditional Behavior
?Branch
?Exclusive on “Transitions”
?Guard [condition], e.g., [else]

?Merge
?Marks the end of conditional behavior

started by a branch.

delivery

25

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Activity Diagrams
?Parallel Behavior
?Fork
?Interleaving semantics
?Sequence of “parallel”activities is

irrelevant!
?Difference from flowchart
?Limited to sequential processes in

flowcharts
?Join
?The outgoing transition is taken only if

all of the states on the incoming
transitions have completed their
activities.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Activity Diagrams

? Why Parallelism?
? Improving the efficiency and

responsiveness of business processes
? Remove unnecessary sequence

and spot opportunities for
parallelism.

? Forks and joins must match except:
1. Threads fork threads

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Activity Diagrams

2. Notational shorthand to remove
clutter from the diagram.

3. Sync state and conditional threads

[in mind for wine]

Open
Red Wine

Cook
Spaghetti

Mix
Sauce

Combine

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Activity Diagrams

?Decomposing an Activity
?Break an activity down into

subactivities.
?The explicit start and end states are

good for the usage of the subactivity
in other contexts.

?Dynamic Concurrency
?Multiplicity Marker *

Receive
Order

Deliver
Order

Fill Line*
Item

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Activity Diagrams

?Swimlanes
?Why?
?Activity diagrams tell you what

happens, but they do not convey which
class is responsible for each activity!
?Label each activity with the responsible

class or human is too tedious.
?Combine the activity diagram’s

depiction of logic with the interaction
diagram’s depiction of responsibility
?Linear or nonlinear zones!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Activity Diagrams

?When to use activity diagrams?
?Analyze a use case
?Action and behavior dependency

?Understand workflow
?Describe a complicated sequential

algorithm
?Deal with multi -threaded applications

?Good for considering parallel behavior
or multi-threaded programming.

26

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Activity Diagrams

?When not to use them?
?Try to see how objects collaborate
?Interaction diagrams

?Try to see how an object behaves over
its lifetime
?State diagrams

?Represent complex conditional logic
?Truth tables

?Disadvantage:
?No link among actions and objects

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Contents
? Introduction
?Development Process
?Use Cases
?Class Diagrams & Object Diagrams
? Interaction Diagrams
?Packages and Collaborations
?State Diagrams, Activity Diagrams,

Physical Diagrams
?Misc

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Physical Diagrams

?Physical Diagrams
?Deployment Diagrams
?Show the physical relationships

among software and hardware
components in the delivered system.

?Component Diagrams
?Show the various components in a

system and their dependencies.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Deployment Diagrams

?Purpose:
?Show how components and objects

are routed and move around a
distributed system.

?Node
?Some kind of computational unit, e.g.,

a piece of hardware
?Connection
?Communication paths over which the

system will interact.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Deployment Diagram

Server

：Object
Database

：Health Care
Domain

Liver Unit
Server

Application

Configure Medical
Cal Knowledge

:Configure Users

Liver Unit Configuration

a Windows PC

:Liver Unit
Client
Facade

:Liver Unit UI Interface
node

object

Configuration

TCP/IP

Diabetes Unit Server

:Object
Database

:Health Care
Domain

TCP/IP

<<communication>>

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Component Diagrams
?Purpose:

?Show the various components in a
system and their dependencies.

?Component
?A physical module of code
?Physical package of code
?A class might appear in several

components
?Dependency
?Communication and compilation

27

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Physical Diagrams

?Combining of Component and
Deployment Diagrams
?Show which components run on

which nodes!

?When to use them?
?Show the physical information of the

system!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Contents
? Introduction
?Development Process
?Use Cases
?Class Diagrams & Object Diagrams
? Interaction Diagrams
?Packages and Collaborations
?State Diagrams, Activity Diagrams,

Physical Diagrams
?Misc

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

A Case Study – Buy a Product
? Buy a Product – Use -Case Text:

1. Customer browses the catalog and selects items to buy.
2. Customer goes to check out.
3. Customer fills up in the shipping information.
4. System presents full pricing information, including

shopping.
5. Customer fills in credit card information.
6. System authorizes purchase.
7. System confirms sale immediately.
8. System sends confirming email to customer.

? Alternative: Regular Customer
? 3.a system display current shipping information, pricing

information, and last digits of credit card information
? 3.b Customer accept or override these defaults
? Return to Step 6!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

A Case Study – Buy a Product

Buy a Product

customer

Regular Customer

<<extend>>
(payment info, shipping info)

Wed-based On-Line Store
A Use Case Diagram

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Item

ProductID : integer
Piece: integer

A Case Study – Buy a Product
?A Class-Diagram

Order

Day: Date
Payment：
Boolean
No：String
Price：Money
Deliver()

Customer

Name: String
Address: String
Credit Card #: String

Credit-Status()

Product

ProductID : integer
InStockNumber : integer

＊ 1

＊

1

＊ 1

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

A Case Study – Buy a Product
?A Sequence Diagram

Order Input
Interface

checkout authorizationIn-Stock

object

checkout()

message

authorization()
HasStock:=
Check()

[HasStock]
remove()

Return

object

needsReorder:=
needsToReorder(
)

Self-Call

Re-order

[hasStock] new Deliver

succeedsucceed

