sources: UM Distilled, Fowler ad Scott, 2nd Ed., AddisonWedley, and UML

Contents

« Introduction

& Development Process

Use Cases

Class Diagrams & Object Diagrams
&s\nteraction Diagrams

« Rackages and Collaborations

& State Diagrams, Activity Diagrams,
Physical Diagrams

& Mjisc

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

Introduction

Unified Modeling Language

#0bject-Oriented Analysis and Design
(OOA&D)

#Specifying, Visualing, and
Documenting Computer Systems.
Important Contributors:

#Grady Booch, Jim Rumbaugh, and Ivar
Jacobson

#0Object Management Group (OMG)

All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001

Introduction

= Development of Object-Oriented
Methods

#Simmla 67 Language (Ole-Jone Dahl
in 1967), Smalltalk, C++, etc.

#£00 Methods, 1980's, 1990’s
#00ADA, Booch
#0O0A/O0D, Coad and Yourdon
#OMT, Rumbaugh
#0OO0AD, Odell
#00SE, Jacobson

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Introduction

By Revision Task Force (RTF)

Relational Software
bought Objectory!

OMT -2, Rumbaugh

Other methods | Booch'91 OMT-1, Rumbaugh OOSE, Jacobson

= Al rights reserved, T W Kuo, National Taiwian Universiy. 2001 * UML 1.1 (1997), 12(1998), 1.3 (1999), 1.4 (2000)

Introduction

#UML - A Modeling Language
#Notations

Modeling Methods
A modeling language
A process
#WVhat steps to take in doing a design!

&sRational Unified Process (RUP)
#By Booch, Rumbaugh, and Jacobson

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001

Introduction

& Notations

#Graphical stuff
£Syntax of the language, e.g., class

Customer

Name
|Address

Credit ()

Meta- Models
=Diagrams, e.g., class diagrams

Introduction

& A Class-Diagram Example

Invoice
Customer
ay: Date N
ayment ame: String
oolean ddress:
o String ring
eliver() redit- Status
Company Persn
ame it Caxcl
redit Status.
redit Limit
Notification()

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

Introduction

200 Method vs Formal
Specification/Design Language
#Less rigorous, easy understanding
and manipulation

2L,[@R,,i?1)?@(?,,1)] ? P,

Standard vs Nonstandard Methods

«Flexibility, Automatic Analysis, and
Info/Code Exchanging

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Introduction

& Why do analysis and design?
Communication
#Code is precise but too detailed.
=E.g., package diagrams to show the
major system components.
#Learning OO
=Help people to do good OO.
=Communicating with Domain Experts
#Understanding of users’ world
#Use Cases and Class Diagrams!

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Introduction

& Why “Unified"?

#sAcross historical methods and
notations

#Across the development lifecycle

«Across application domains

#Across implementation languages
and platforms

#Across development process

#Across internal concepts

Introduction

= Objectives of UML
#Specifying, Visualing, and
Documenting Computer Systems.
#Elements -> Vocabularies

«Design Guidelines and Experience
Rules -> Grammar

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

& Implementation View

#Specify how to split the system into
software components and do
implementation.

= Diagrams: state, sequence, collaboration,
activity diagrams.

Process View

#Specify the operation of the entire
system

sDiagrams: component, state, sequence,
collaboration, activity diagrams.

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Introduction Introduction
= Five UML View -Points .
& Use-Case View
system assembly . . .
configuration management 5 Specify system functionality for users,
] designers, and test engineers.
Implementation «Diagrams: use cases, sequence,
View collaboration, state, activity diagrams.
iew Design View
= Specify detailed design of the system's
Deplqyment internal functionality, including usecases
View and actors.
berhvior : system architecture & @{Diagrams_: CIass,_(_)bje(_:t, State, Sequence,
Logical I topology Physical collaboration, activity diagrams
View Points ! > View Points
* The figure comes from " 2000.
Al ights reoved T W Kuo, Natol Tawen Univrsiy, 201 * Al ightresve, Té-Wel Kuo, NaonaTawan Universiy, 2001

= Deployment View

#Specify the architecture of the
system hardware and the
deployment of software processes.

= Diagrams: deployment, state, sequence,
collaboration, activity diagrams.

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Introduction

& UML Vocabularies
#Things
#Structural things, e.g., classes,
components, use cases.

#Behavioral things, e.g.,Interaction
and state machine.

£Grouping of things, e.g., package.
eAnnotational things, e.g., notes.

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Introduction

=Relationships
#Dependency
#Association — >
«Generalization >
#Realization

=Diagrams
#AJse case, class, object,

sequence, collaboration, state,
activity, component, deployment.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001

Contents

« Introduction

& Development Process

= Use Cases

Class Diagrams & Object Diagrams
Interaction Diagrams

ackages and Collaborations

& Btate Diagrams, Activity Diagrams,
hysical Diagrams
isc

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

Development Process

#UML - A Modeling Language
=Notations

Modeling Methods

#A modeling language

<A process

#What steps to take in doing a design!

& Rational Unified Process (RUP)
By Booch, Rumbaugh, and Jacobson

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

Overview

&sAn iterative and incremental
development process:
eEach construction iteration

#Analysis, design, implementation,
testing, and integration.

=4

| nception| Elaboration[> c 4ruction |:>rransition

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Overview

&Keep a ceremony to a minimum!
#A lot of formal paper
deliverables, formal meetings,
formal sign-offs for high-
ceremony projects.

Possible iterations in all phases!

Al rights reserved, Tei-Wei Kuo, National Taiwan University, 2001.

Inception

& Goal:

#Establish the business rationale for
the project.

#Decide the scope of the project.
= Forms:
=lnformal chatting
=Full-pledged feasibility study
What should be done?

#Work out the business case — cost
and income!

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Elaboration

#Want to get a better understanding of
the problem:

=What is it you are actually going to build?
#How are you going to build it?

Contents:
= Collect more detailed requirements.

Do high-level analysis and design to
establish a baseline architecture.

Create the plan for construction.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001

Elaboration

#Risks:
«Requirement Risks
ZTechnical Risks
£Skill Risks
ePolitical Risks

Elaboration - Requirement Risks

&sRequirement Risks
#Q:

ANill we build a wrong system?
&Starting points:

#Jse cases

=A typical interaction that a user has
with the system in order to achieve a

Trading Manager

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

Elaboration - Requirement Risks

& The usage of use cases
#lIndicate a function that users can
understand and that has a value for
users.
#No too much detailed!
Domain Model
&A model whose primary subject is
the world the computer system is
supporting!

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Elaboration - Requirement Risks

& Important tasks for elaboration
«=Get all potential use cases,especially
the most important and riskiest ones.
=Come out the skeleton of the
conceptual model of the domain:
#How the business operates?

=lays a foundation for the object
model that will represent objects
supported by the system.

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Elaboration - Requirement Risks

& UML Techniques for Conceptual
Domain Model:
#Class Diagram
=Definitions of vigorous vocabulary
about the domain.
=Activity Diagram
#Encouraging the finding of parallel
processes.
#Interaction Diagram
=Exploring different roles interact in the
business

Elaboration - Requirement Risks

& A Class-Diagram Example

Invoice
Customer
ay: Date T
ayment ame: String
oolean ddress
ot ring
Deiver() Credwﬁ
Tompany Person
ame
redit Staty
redit Limit

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Elaboration - Requirement Risks

GodumsDel \ve(y> (Recewe Paymem)

—
K2

Elaboration - Requirement Risks

& An Interaction Diagram Example —
Sequence Diagram

11 pf
ExlE] ==
T T
| |
| |
|

) f

| ——
4 3 asstock:=
[t

4

T
|
|
]

* Al rights reserved, Té\Wei Kuo, Na\ona% University, 2001

Elaboration - Requirement Risks

& Remark
#Use minimum notation

#Focus on important issues and risky
areas
=A starting point for building classes in
the construction phase
#Use package diagrams if needed

#A skeleton — concentrate on
important details, instead of all.

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Elaboration - Requirement Risks

& A Package Diagram Example

Customer

Service
Orders | Customers

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Elaboration - Requirement Risks

& Remark

=A small team in building the domain
model

£Build a prototype of any tricky parts
of the use cases.

=Get access to domain experts!

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

laboration - Technological Risks

#Technological Risks

#Q:
ANill the selecting technology
actually do the job for us?

#Nill the various pieces fit
together?

&Possible solution:

#Build prototypes to try out
technology!

* All rightsreserved, Tei-Wei Kuo, National Taiwan University, 2001

Elaboration - Technological Risks

Biggest Challenge:

#How the components of a design fit
together?
#E.g., Java + database + session + ...
& Must:
#Address any architecture design
decisions!
=Especially for distributed systems!

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

Elaboration - Technological Risks

= Questions: How can we change the
elements of the design relatively easy?

=What will happen if a piece of technology
doesn’t work?

<What if we can’t connect two pieces of the
puzzle?

What is the likelihood of something going
rong?

= Lopk at use cases to do assessment!

=Class diagrams,interaction diagrams,
ackage diagrams,deployment diagrams.

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

Elaboration - Technological Risks

A Deployment Diagram Example:

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Elaboration - Skills Risks

& $kill Risks
Can you get the staff and expertise you need?
«Always little experience and thought
Solyitions
&Short training
=Mentoring
=Prgject reviewing every specific period of time
#Rehding
#Pattern learning

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Elaboration - Political Risks

& Political Risks

=Are the political forces that get in the
way and seriously affect your project?
nternal
=External

Solutions
#Find good ones to do it if you cannot!

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Elaboration

& Duration
A fifth of the total length of the project.

Events to signal the termination

=Developers feel comfortable providing
estimates to the person-week effort.

«All significant risks have been
identified, and how you intend to deal
with them are known.

* All rightsreserved, Tei-Wei Kuo, National Taiwan University, 2001

Planning of the Construction
Phase

= Goal
=Be aware of progress
#Signal progress through the team

& Essence

#Set up a series of iteration
=Define the functionality to deliver in
each iteration

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

Planning of the Construction
Phase

= Method
#Customer vs Developer
£Customer

#Assess the business value of a use|
case.

zDeveloper
£Build the system

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

Planning of the Construction
Phase - Steps

& Steps

#Categorize use cases according to the
business value and development risks!
#Determine your iteration length
#A fixed iteration with a handful of case
uses being implemented.
#project velocity
=Developer-week per iteration =
(#developers*iteration-length)/load-factor
#teration#
«(Development-time of all use cases /
Developer-week per iteration) + 1

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Planning of the Construction
Phase - Steps

#Assign use cases to iterations
=Do not put off risk until the end!

& Contingency Factor

#10~20 percent of the construction
time.

Transition

#10~35 percent of the construction
time for tuning and packaging

Ready for a release plan!

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Construction

& Goal

#Build the system in a series of iterations.

=Demo and confirm the implementation.
=Reduce risk!

Iterations within construction are both
incremental in function and iterative in
he code base!

s Refactoring!
5 Integration!

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Remark

Self-Testing Software
#Testing as a continuous process!
£Unit test code by the developers

#Function test code developed by a
separate team

When the plan goes away!
&Time-boxed!
#Redo the plan!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001

Remark

Refactoring — a couple of small steps
#Rewriting vs redesigning

#Never refactor a program and add
functionality to it at a time.

#Have a good test in-place before
refactoring

#Take short, deliberate steps
#Avoid debugging!

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

Using UML in the Construction

Add a use case
#Check class diagrams to see how
they fit the software been built!

How classes collaborate to
implement the functionality required
by each use case

&Try interaction diagrams!

«If the change is serious, use the
notations to discuss with colleagues!

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

Using UML in the Construction

& Use UML to help document what is
built!

#Detailed documentation should be
from the code! (+ additional doc)
& Use package diagrams as the
logical road map of the system!

#Dependencies of logical pieces

Using UML in the Construction

& For a class with a complex behavior
#Use state diagrams to describe it!

#Use iteration diagram to describe
complicated interactions among classes

#\YWhen a complex algorithm is involved
Use activity diagram to understand the

& Use deployment diagrams to show code!
the high-level physical picture!
ing UML in the Construction Transition

#X\n State Diagram Example

Begn
Notal items chgefed tem (\
] examine tems available] Send
dolcheck) i doliniie
[Allitems checked && [y g
‘someitems not in stock] vl gl dlivered

Transition

Deliver
Sate

Sdf -
Transition

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Development to fix bugs!

#No additional of substantial functionality!
#Beta-testing, performance tuning, user training,
etc.

iterative development?
=D¢ the development process regularly!
#Gat used to deliver finished code!
& Tradeoff
#Mget users requirements
=0pfimize code!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001

When To Use iterative
Development

&0nly on projects you want to
succeed!

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

Contents

« Introduction

& Development Process

Use Cases

Class Diagrams & Object Diagrams
&s\nteraction Diagrams

« Rackages and Collaborations

&5 State Diagrams, Activity Diagrams,
Physical Diagrams

& Mjisc

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

Use Cases

= Why use cases?
«People need a way to communicate
in project development and planning.

& Scenarios — those behind use cases

A sequence of steps describing an
interaction between a user and a
system.

The customer browses the catalog and adds desired
items to the shopping basket. When the customer
wishes to pay, the customer describes the credit and
shopping info and confirms the sale. The system

check the authorization on the credit card and confirms
the sale both immediately and with a follow -up email.

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Use Cases

& A use case is a set of scenarios tied
together by a common user goal!

Buy a Product — Use-Case Text:

. Customer browses the catalog and selects items to buy.
Customer goes to check out.

Customer fills up in the shipping information.

System presents full pricing information, including
shopping.

Customer fills in credit card information.

System authorizes purchase.

System confirms sale immediately.

8. System sends confirming email to customer.
Alternative: Authorization Failure

= At Step 6, if the authorization fails,let customer try again!

¥

pwN PR

Nown

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Use Cases

& How to create a use case?

#Describe the primary scenario and
alternatives as variations on that
sequence!

#The existence of preconditions!

#Divide up use cases

=E.g., Regular Customer — skip steps 3,
4, and 5 when info is already there.

#Need an amount of detail depending

on the risk in each use case!

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Use Case Diagrams

Introduced by Jacobson in 1994

#Show what needed to build in each
iteration!

x~Example — Trading (Chp3)

= Pkimary Elements:

ctor

#A role that a user or an external system
plays with respect to the system!

user can play more than one role.

ctors, who carry out use cases, are useful
when trying to come up with the use cases.

* All rightsreserved, Tei-Wei Kuo, National Taiwan University, 2001

10

Use Case Diagrams

& Situations worth tracking the actors

later:

#Need configuring for various of users.

#Help in negotiating priorities among
various actors.

Remark:

#Use cases may not have clear links to
specific actors.

#A good source for identifying use
cases is external events!

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

Use Case Diagrams

= From the external point of view

#It describes what use cases are.
#Scope and Constraints

=What users really want!

& From the internal point of view
#It describes how use cases operate.

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

Use Case Relationships

£ Include
#0ccur when you want to avoid
repetition.
=E.g., Analyze-Risk and Price-Deal
“‘include” Valuation.
& Generalization
#Describe a variation on normal
behavior (casually).
#Override the base use case!

#~E.g., Limits-Exceeded is “generalized”
into “Capture-Deal”.

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Use Cases Diagrams

& Extend

#Similar to generalization but with
more rules to it.

#Extension points for adding behavior
to the base use case.
#Example — Buy-a-Product and
Regular Customer
Generalization and Extend may
cause the splitting of complicated
use cases.

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Use Cases

& System Use Cases
#An interaction with the software.
=E.g., text copying and style def. functionality
= Business Use Cases
#How a business responds to a
customer or an event.
=E.qg., unifying text formats.
Order in Elaboration
#Business use cases first

& System use cases to satisfy business use
cases

«Use cases represent an external view.

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Use Case Diagrams

& Use Case Boundary
#To identify what is external or internal
=Typical system boundaries
#HW/SW boundary of a device or
computer system
#Dept of an organization
#Entire organization
& Examples

=Wire in paychecks

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001

11

Contents

& Introduction

& Development Process

= Use Cases

ﬁ Class Diagrams & Object Diagrams
Interaction Diagrams

ackages and Collaborations

& Btate Diagrams, Activity Diagrams,
hysical Diagrams
isc

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

Class Diagrams

#Why Class Diagrams?

#Central within object-oriented methods
in modeling systems and the
relationship among their components.

#\Usages of Class Diagrams
Types, attributes, operations of objects
Static relationship among them
=Association
#Subtypes, etc.

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

Class Diagrams

= Three Perspectives in Drawing Class
Diagrams (Cook and Daniels, 1994).
=Conceptual — << type >>
=#Represent the concepts in the domain

under study —maybe no direct mapping to
classes

£Should be language -independent
Specification — << type >>
#Consider software and the interfaces of

the software
#No implementation should be considered.

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Class Diagrams

z Implementation — << implementation class >>
=Lay down the implementation bare

Lines between perspectives are not
harp; however, it is important to
eparate the specification perspective
nd implementation perspective!!
rspectives are no part of the formal
UML but are useful in modeling.

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Class Diagrams

& Association

#Relationship between instances of
classes.

#Association Ends — Roles!
&Multiplicity — *, 1..n, etc.
#Navigability

&#Order -> Customer
#Naming

#Associations — verbs

#Roles — nouns

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Class Diagrams

= Perspectives
#Conceptual relationships between
classes.
=Within specification perspective
#Associations represent responsibilities —
Queries and Updates
Class Order {

Public Customer getcustomer ();

#The diagram indicates only the interface —
nothing more!

* All rightsreserved, Tei-Wei Kuo, National Taiwan University, 2001

12

Class Diagrams

#In implementation model
#Pointers in both directions between
the related classes.
class Order {
private Customer _customer;
private Set _OrderLines;

#Navigability!
#Unidirectional/Bidirectional
Associations
#Inverse Constraints

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

Attributes

 Attributes denote the status and
characteristics of classes
£Single valued

=visibility name:type = default-value
#Optional, e.g., dateReceived[0..1]:Date
= Rerspectives

At the conceptual level

£Simply notations

=Wt the specification level

=A way to set values

\t the implementation

=A field for a attribute

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

Operations

& Definition:
zOperations are processes that a class
knows to carry out.

#Operations correspond to the methods
on a class.

Perspectives
#At the conceptual level,
#The principal responsibilities of classes

#At the specification level,
#Methods on a class

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Operations

#At the implementation level,
&Private (-), public (+), and protected (#)
operations, as well:
visibility name (parameter-list): return -
type-expression [property-string]
&+ balanceOn (date:Date): Money
sParameter
«Direction name:type = default-value
(direction: in, out, inout)

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Operations

& Types — constraints
#Queries
#Marked as { query }
=Modifiers

#Getting/Setting Methods (internal
knowledge)

Operations vs Methods

#The body of a procedure — method
(body)

#Method call/declaration — operation
#e.g., polymorphism — subtyping

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Generalization

Definition
#"Super-type” — inverse of
specialization
Perspectives
#At the conceptual level,

#Everything about a “super-type”is true
for a “subtype”.
#At the specification level,
#The interface of a “subtype” must
conform to that of a “super-type”.

* All rightsreserved, Tei-Wei Kuo, National Taiwan University, 2001

13

Generalization

#Substitutability of code
zpolymorphism
#At the implementation level,

#nheritance in programming
languages

#Subclassing is one way to implement
subtyping but not the only way.

Stability of Generalization

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

Constraints Rules

& Constraints { } on attributes,
associations, generalization, etc.

& Format:
=Informal English statements
#0Object Constraint Language (OCL)

flight.pilot.training_hour >=
flight.plane.minimum_hours

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

Class Diagrams

& When to use them?

#Do not try to use all the notations
available to you.

«Fit the perspective from which you are
drawing the models to the stage of the
project:

#Concept model— analysis
#Specification model— software
=mplementation model- illustrate
implementation techniques
=Concentrate on key areas

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Design by Contract
ertrand Meyer)

& Assertions
A Boolean statement that should never be
false.

\[ypes:

Pre-conditions — checked by callers
#\What we expect!

Post-conditions — checked by operations
#What we do! (e.g., square-root)

nvariants — constraint rules on class

iagrams

#May be false during the execution on a
method (e.g., balance ==sum(entries.amount()).

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Design by Contract
(Bertrand Meyer)

& Assertions

=Subclassing

#Strengthen the invariants or post-

conditions!
#Weakening the pre -conditions!
Substitution
=ldeally as a part of the code!
#lnvariants are equivalent to
constraint rules on class diagrams!

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Contents

& Introduction

Development Process

Use Cases

Class Diagrams & Object Diagrams
ﬁ # Interaction Diagrams

= Rackages and Collaborations

State Diagrams, Activity Diagrams,
Physical Diagrams

& Mjsc

* All rightsreserved, Tei-Wei Kuo, National Taiwan University, 2001

14

Interaction Diagrams

& Purpose:
#Models that describe how groups of
objects collaborate in some behavior.

#Capturing of the behavior of a single
use case typically.

Types:
#Sequence Diagrams
#Collaboration Diagrams

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

Sequence Diagrams

& A Object — A Box
s Lifeline — Object’s Life
= Message

&An arrow between the lifelines of two
objects

#Message Order (top to bottom)

#Labeled with a name, arguments,
control information, etc.

A Self-Call

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

Sequence Diagrams

&5 Control Information
&A condition, e.g., [needsReorder]
£An iteration marker, e.g., *[for all order
lines]
& Return
A return from a message — a dashed line
Asynchronous Message — do not block
the caller
=Create a new thread or a new object

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Communicate with a thread that is running.

Sequence Diagrams

Object Deletion X

#Why Sequence Diagrams?
=Emphasize on sequence
#Capture the overall flow of control!
#Show concurrent processes!

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Collaboration Diagrams

&5 An Interaction Diagram which
provide the spatial layout of objects!
= Notation
#objectName:ClassName
& Numbering of Messages
&Simple Numbering

zDecimal Numbering
#Which operation is calling which
operation!

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Collaboration Diagrams

& Qollaboration Diagrams with Simple Numbering

5. needsReorder:=needToReorder()
* [for all order lines]. prepare()

[j 3. hssooe=credk()]
Macallan |nTirder Line . Macallanstgigkzstockltem
7. [hasSuT : _ 4. [hlasStock]:remolve() _ 5 feedsR I,]:new

:Delivery ‘tem :Reorder Item

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001

Collaboration Diagrams

2 Collaboration Diagrams with Decimal Numbering

1.1.2.1. needsReorder:=need T oReorder ()
1.1*[for all order lines]. prepare()
1.1.1, hasStock :=check() m

Macallan line:Order Line| = acallan stock:Stock |tem)

1.1.3. [hasStock]: 1511 1.1.2. [hasStock]:remove()

:Delivery Item
* Al ights resrved, TeWei Kuo, Natiofl Taivian Uriversiy. 2001

J 1.1.2.2. [needsReorder]:new

:Reorder Item

Interaction Diagrams

#Why Collaboration Diagrams?

#Use the layout to indicate how
objects are statically connected.

When to use Interaction Diagrams?
#Behavior of several objects within a
single use case typically — simplicity!
#Collaborations among the objects
#MWhen alternatives are considered?

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

Contents

& Introduction

& Development Process
Use Cases

@ Class Diagrams & Object Diagrams
Interaction Diagrams

#Packages and Collaborations

& Btate Diagrams, Activity Diagrams,
hysical Diagrams

isc

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Class Diagrams: Advanced
Concepts

5 Class Diagrams

#Central within object-oriented
methods in modeling systems and
the relationship among their
components.

& Many more notations:

& Stereotypes
#Core extension mechanism of UML
#Subtypes of Class, Association,
and Generalization

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Class Diagrams

s Interface
#An example of Stereotypes!

=A class that has only public
operations with no method bodies or
attributes

#<<interface>>
= Profile

#Extend a part of UML with
stereotypes for a particular purpose.

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Object Diagrams

& A snapshot of the objects in a
system at a point in time.
#An instance diagram
ssinstance name: class name
«Both are optional— :Person

A collaboration diagram without
messages

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001

16

Class Diagrams

& Class Scope Operations and Attributes
#Class Scope vs Instance Scope

Classification

#Relationship between an object and its
type

#Single vs Multiple Classification
£Single Classification:

&An object belongs to a single type,
which may inherit from supertypes.

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

Class Diagrams

=Multiple Classification

#An object may have any of these
types assigned to it in any
allowable combination.

eDiscriminator

#An indication of the basis of the
subtyping — disjoint!
=Constraint {complete}
#An instance of the superclass
must be an instance of one of
the subtypes of a group.

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

Class Diagrams

= Multiple Classification

Family

Dot
DOCtof

{cdmplete}

(Patient, Doctor) X

(Mae, Nurse)

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Class Diagrams

& Static vs Dynamic Classification
#Dynamic Classification
#Change objects’ type within the
subtyping structure.

=Multiple, Dynamic Interface
#Additional behavior

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Class Diagrams

& Multiple, Dynamic Classification

sex
{ complete}

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Aggregation and Composition

Aggression
=A part-of relationship
=E.g.
#car and engine
A style instance may be shared by a polygon and a

circle.
& Composition
stronger variety of aggression

#[The parts are usually expected to live or
ie with the whole.
#E.g., a point must belong to a polygon!

* All rightsreserved, Tei-Wei Kuo, National Taiwan University, 2001

17

Aggregation and Composition

& Alternative Notation:

Circle Polygon
o1 ordered} 3.*
Point Point
1 1
Style

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

Derived Associations and
Attributes

& Derived Features
#Derived from others on a class

diagram
| TimePeriod | =Conceptual Perspective
jtart:Date =Confirm with the domain experts
tnd:Date

#Specification Perspective
&Constraints between values — age

=mplementation Perspective
#Caching for performance reasons

duration:Quantity

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

Interfaces and Abstract
Classes

& Interface

#Abstract Class: A class with no
implementation (fields and method
bodies) but operation declarations

#ltalicize the abstract item name and
label it with the { abstract } constraints

Realization

#=0ne class implements behavior
specified by another — confirm to the
interface without using inheritance!

#Subtyping in a specification model!

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Interfaces and Abstract
Classes

& Dependency

&If one changes, then anyone which
depends on the former must change
accordingly.

<<il > <=———

ILputSream Datalopt -
]
]
[}

[patal nputStream

* An abstract class allow the implementation of some of the methor
* Al rights resarved, Te Wi Kuo, National Tawan Universiy, 2001.

Reference Objects and Value
Objects

& Reference Objects

=An object with an identity and can be
referenced — no copies (change
synchronization)!

#=E.g., Customer
& Value Objects
#Values without identities, e.g., date.

#Immutable built-in values of the type
system (cause of confusion in UML)

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Multivalued Association Ends

= A Multivalued End
#Whose multiplicity’s upper bound is
greater than 1, e.g., *.
=Constraint
#Sets — basic type
#{ ordered }
#{ bag } — multi -set
#{ hierarchy }
={dag}

* All rightsreserved, Tei-Wei Kuo, National Taiwan University, 2001

18

Frozen Constraint

Frozen Constraint

#Attribute — no change on values,
value set at the object creation time.
#{ frozen } vs { read only }
sAssociation End — the association

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

end on a class could not be changed.

Associations

« Classification
#=The object Shep is an instance of the
type Border Collie
& Generalization — being transitive
#The type Border Collie is a subtype
of the type Dog
Quantified Associations
#Specification Perspective — imply an
interface!

#Implementation Perspective — The
use of a data structure to hold data

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

Associations

A Qualified Association

Hoct
reer=He

lineitem

ass Order {
public OrderLine getLineitem (Product aProduct);

pss Order {
private Map _lineltems

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Associations

& Association Classes

#Add attributes, operations, and other
features to associations — one instance
from each side!

Person pes

Emproyment

&)

#Another notation: promoting...

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Associations

An lllegal Association Class (Although
it seems fine)

Employment

—

)

& Another Solution: Promote the
ssociation class into a “full” class!

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Associations

= Use Stereotypes
#<<history>>

0.1

class Person {
Company getEmployen();
Company getEmployer(Date)
void changeEmployer(Company newEmployer,
Date changeDate
void leaveEmployer (Date changeDate);

* All rightsreserved, Tei-Wei Kuo, National Taiwan University, 2001

19

Parameterized Class

& Parameterized Class
=Template in C++

Parameterized Classes

£ A Bound Element
#Set<Employee>

pumlypf; template <class numtype>
Number | class number pet<Employee>
{
n private: or A stereotype
numtypen; _————
get_number() public: —L T |
number () {n=0;} Set 1"
>
: " void get_number() { cin >> n;
int main|{)) } get 0t } <bind>: Enol Set
number<int> ni; insert(T) <Employee> Fmployee:
nc.get_number(); remove(T)
* Al rghts reserved, T W Kuo, Natiofld Taiven University, 2001 * Al ightsreserved, Te-Wei Kuo, Nationa| Tawan Universty, 2001

« Different languages have different
rules in “+private”, “-public”, and
“#protected”!!

=C++
#Public Member: visible to anywhere!
«Private Member: used only by the class that
defines it!
=Protected Member: (a) used only by the class
that defines it or (b) a subclass of that class!

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

& Introduction

= Development Process

Use Cases

Class Diagrams & Object Diagrams
, & \nteraction Diagrams

@ & Rackages and Collaborations

& State Diagrams, Activity Diagrams,
Physical Diagrams

& Mjsc

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Package Diagrams

#How do you break down a large
system into smaller systems?

efunctional Decomposition

#Separation of functions and
data

«UML Package Diagrams
A OO Grouping Mechanism

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Package Diagrams

« Definition: Package Diagrams

#Class Diagrams that only show
packages and dependencies

= Packages
#Group of Classes or Packages
Dependencies
= A dependency exists between two
elements if changes to the definition of

one element may cause changes to the
other element.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001

20

Package Diagrams

= Why Changes Propagate?

#0ne class sends messages to
another.

#0ne class has another as part of its
data.

£0ne mentions another as a
parameter to an operation.

Interface changes!

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

Package Diagrams

How to minimize dependencies?

#UML Dependency vs Compilation
Dependency?

#Why no transitivity?

£Similar to a layered architecture!

Example: Package Diagram

* Al rights reserved, Té\Wei Kuo, Nationa

| raiwen University, 2001.

Package Diagrams

& Class Types inside a Package:
&Private, Public, or Protected

#Sharing/Dependency of the Public
Methods of Public Classes!

=Reducing of the Interface of a
Package

=fFacades

Another Objective for Package
Diagrams:

#Help to see what dependencies are!

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Package Diagrams

z Containment of Packages or Classes
#Key Classes

Dependency of Packages That Contain
Sub-packages

=Summaries of Low-Level Dependency
& k<global>> Package

Global Dependency

&5 J<abstract>> Package

Generalization — Dependency Implication

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Package Diagrams

& Rules of Thumb

=Minimize dependencies
#Refactoring!

#Remove cycles in the dependency

structure as much as possible!
=Contain them in a large containing
package!

«Eliminate them from the interactions

between the domain and external
interfaces!

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Package Diagrams

& Collaboration

#The interaction among two or more
classes
£Show the implementation of an

operation or the realization of a use
case.

#May include class diagrams and
interaction diagrams

#Use for classes inside a package or
common behavior across packages

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001

21

Package Diagrams

= Parameterizing of Collaboration

#Same collaboration for different
classes

=Roles (Collaboration) vs Classes
=Pattern

#Example: Collaboration for Sale

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

Package Diagrams

X Parameterized Collaboration for Sale

.
~

{ ~ -

-

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

Package Diagrams

Using the Sale Collaboration

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Package Diagrams

#When to Use Package Diagrams

=Whenever a class diagram that
encompasses the whole system is
no longer legible on a A4 sheet of
paper!

=Useful for testing as well!
= When to use Collaboration?
=Refer to a particular interaction
«Parameterized collaboration

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Contents

& Introduction
& Development Process
Use Cases
Class Diagrams & Object Diagrams
Interaction Diagrams
& Packages and Collaborations
ﬁ = State Diagrams, Activity Diagrams,
hysical Diagrams
isc

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

State Diagrams

= Why State Diagrams?

«Describe the behavior of a
system.

#Describe all of the possible
states that a particular object can
get into and how the object’s
state changes as a result of
events that reach the object.

#Based on statechart by David Harel
(1987)

* All rightsreserved, Tei-Wei Kuo, National Taiwan University, 2001

22

State Diagrams

& Syntax
#Event [Guard] / Action
=do / activity
& Start point
z Action
#Be associated with a transition

Activity
#Be associated with a state
#May be interrupted by some event.

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

=0ccur quickly and is not interruptible.

State Diagrams

& Guard
«A logical condition

#Guards from the same state should
be mutually exclusive

A transition should occur as soon as
the corresponding event happens.

A state could have no activity!
Superstate

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

tate Diagrams

n State Diagram Example

Begn »
Not dl items get firstitem
/ get nextitem [Allitemschecked&& 7\
Examine [A7T g
do/ check do/initiate
item Activity b e

[All items checked &&
someitems not in stock] availbis elivered

Transition
Deliver
Sate

Item Received
[someitems
in

Sdf-
Transition

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

ate Diagrams

& Rn State Diagram Example

Bajn
Notalitems checkgg— /L fird tem
/ get nextitem Il items checked & & /A

Examine 9 Send
/ check po/initiate
item deliver

[All items checked & &
someitemsnot in stock]

Item Reoeived gelled
[som
insy
| wat o Deliver

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

ate Diagrams
An State Diag@ra Example - Superstate

Bagn > I |
item T
Notal tems chgeed L ATHvEN
T amine temsavallable] Send
do/ check dolinitiate
'« Adtivity e

[All items checked &&

someitems ot in stock] Déivered

canfelled
cancelled Deliver

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

State Diagrams

Other Event Types

#No-state transition event
zeventName / actionName

esAfter Event
#after (20 minutes)

=When Event
#when (temperature > 100 degrees)

=Entry/Exit Event

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001

23

State Diagrams

& Example: Payment authorization

[payment not ok]

Rejected

Delivered

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

State Diagrams

& Concurrent State Diagrams
#More than one state at any point

#Good when a given object has sets
of independent behaviors

Checki n
———————————————————————— -G)

uthorizing)_>B.LB.DQLLZQLJ—’O
> Ré’ ected]

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

cancelled

State Diagrams

#\When to Use State Diagrams?
#Describe the behavior of an object
across several use cases.
=Use interaction diagrams or activity
diagrams if needed
£0nly classed exhibiting interesting
behavior!
&5 Do not draw state diagrams for every
class!

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Contents

& Introduction

= Development Process

Use Cases

Class Diagrams & Object Diagrams
& \nteraction Diagrams

& Rackages and Collaborations

ﬁ & State Diagrams, Activity Diagrams,
Physical Diagrams

& Mjsc

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Activity Diagrams

= Why Activity Diagrams?
=Useful in connection with workflow and
in describing behavior that has a lot of
parallel processing.

#Describing the sequencing of activities
with support for both conditional and
parallel behavior.

#0rigin:

«Event diagrams (Jim Odell), state

modeling techniques, workflow
modeling, Petri nets.

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Activity Diagrams

& Core Symbols
#Activity State or Activity

esConditional Behavior <>
#Branch
#Exclusive on ‘Transitions’
#Guard [condition], e.g., [else]
=Merge
#Marks the end of conditional behavior
started by a branch.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001

24

Activity Diagrams

#Parallel Behavior
#Fork —
#nterleaving semantics
#Sequence of “parallel” activities is
irrelevant!
#Difference from flowchart
#Limited to sequential processes in
flowcharts
£Join
#The outgoing transition is taken only if
all of the states on the incoming
transitions have completed their
activities.

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

Activity Diagrams

& Why Parallelism?

= Improving the efficiency and
responsiveness of business processeg

& Remove unnecessary sequence
and spot opportunities for
parallelism.

& Forks and joins must match except:
1. Threads fork threads

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

Activity Diagrams

2. Notational shorthand to remove
clutter from the diagram.

3. Sync state and conditional threads

P

v

ind for wing

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

Activity Diagrams

& Decomposing an Activity
=Break an activity down into
subactivities.

=The explicit start and end states are
good for the usage of the subactivity
in other contexts.

Dynamic Concurrency
=Multiplicity Marker *

Activity Diagrams

& Swimlanes
=Why?
#Activity diagrams tell you what

happens, but they do not convey which
class is responsible for each activity!
#lLabel each activity with the responsible
class or human is too tedious.
#Combine the activity diagram’s
depiction of logic with the interaction
diagram’s depiction of responsibility
#linear or nonlinear zones!

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2001

Activity Diagrams

#When to use activity diagrams?
=Analyze a use case
#Action and behavior dependency
#Understand workflow
#Describe a complicated sequential
algorithm
=Deal with multi -threaded applications
= Good for considering parallel behavior
r multi-threaded programming.

25

Activity Diagrams

= When not to use them?
#Try to see how objects collaborate
#nteraction diagrams

#Try to see how an object behaves over
its lifetime

#State diagrams

#Represent complex conditional logic
&Truth tables

isadvantage:

<No link among actions and objects

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

Contents

« Introduction

& Development Process

Use Cases

Class Diagrams & Object Diagrams
&s\nteraction Diagrams

« Rackages and Collaborations

ﬁ & State Diagrams, Activity Diagrams,
) Physical Diagrams

& Mjisc

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

Physical Diagrams

& Physical Diagrams

=Deployment Diagrams

#Show the physical relationships
among software and hardware
components in the delivered system.

Component Diagrams

#Show the various components in a
system and their dependencies.

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Deployment Diagrams

& Purpose:

= Show how components and objects
are routed and move around a
distributed system.
« Node

#Some kind of computational unit, e.g.,
a piece of hardware
Connection

zCommunication paths over which the
system will interact.

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

ployment Diagram

TCPIP

il

J

TCPIP

Configuration

oo

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

* All rightsreserved, Tei-Wei Kuo, National Taiwan University, 2001

Component Diagrams

& Purpose:

#Show the various components in a
system and their dependencies.

& Component
& A physical module of code
=Physical package of code

#A class might appear in several
components

Dependency
ZCommunication and compilation

26

Physical Diagrams

Combining of Component and
Deployment Diagrams

#Show which components run on
which nodes!

2 When to use them?

#Show the physical information of the
system!

* All rights reserved, Tei-Wei Kuo, Natiofa Taiwan University, 2001

Contents

« Introduction

& Development Process

Use Cases

Class Diagrams & Object Diagrams
&s\nteraction Diagrams

« Rackages and Collaborations

& State Diagrams, Activity Diagrams,
Physical Diagrams

@5Msc

* Al rights reserved, Té\Wei Kuo, National|Taiwan University, 2001.

A Case Study —Buy a Product

Buy a Product — Use-Case Text:

Customer browses the catalog and selects items to buy.
Customer goes to check out.

Customer fills up in the shipping information.

System presents full pricing information, including

shopping.

Customer fills in credit card information.

System authorizes purchase.

System confirms sale immediately.

8. System sends confirming email to customer.

Alternative: Regular Customer

= 3.asystem display current shipping information, pricing
information, and last digits of credit card information

= 3.b Customer accept or override these defaults

Return to Step 6!

Eal ol o

No o

* All rights reserved, Tei-Wei Kuo, National Tawan University, 2001

Case Study —Buy a Product

Diagram

A Use

M ad-bacad
Yec

| Ruya Product

Al
|
|

X

customer

<extend>>
ayment info, shipping info)

* All rights reserved, Tei-Wei Kuo, Nationa Taiwan University, 2001

A Case Study —Buy a Product

& A Class-Diagram

Order
Day: Date T Customer
Payment [Name: String
Boolean doress String.
NO STy Credit Card #: String
Delivir() Creit-Staus()
1
Item Product
1
ener
o ini £

* Al rights reserved, Tei-Wei Kuo, National Tawan University. 2001

Case Study — Buy a Product

& nce Diagram

checkoft) | |
- |
a butharization)
> | ==
hek)

message | object
Ta

1 — — — — Y| messioca new

<
succeed succeed

* All rightsreserved, Tei-Wei Kuo, National Taiwan University, 2001

27

